QUIZ 3 STUDY GUIDE

PEYAM RYAN TABRIZIAN

Know how to:

- Given the graph of a function, sketch the graph of its derivative (2.8.5)
- Given 3 graphs, determine which one is the graph of f, f', f'' (2.8.41)
- Recognize a limit as a derivative (3.7.32, 3.7.36)
- Know how to find the derivative of a function
 - (1) Using the power rule $((x^n)' = n(x^{n-1}))$, valid for all nonzero numbers n, even $\frac{1}{2}$, or $\sqrt{2}$) (3.1.6, 3.1.8)
 - (2) Using the sum rule ((f+g)' = f'+g') and the constant multiple rule ((cf)' = f'+g')c(f')) (3.1.23)
 - (3) Using $(e^x)' = e^x$, as well as $(a^x)' = ln(a) \cdot a^x$ and $(ln(x))' = \frac{1}{x}$ (3.1.17, 3.1.32, 3.6.3, 3.6.16, 3.6.18)
 - (4) Using the product rule ((fg)' = (f')g + f(g')) and the quotient rule $((\frac{f}{g})' =$
 - $\frac{(f')g f(g')}{g^2}) (3.2.15, 3.2.18, 3.2.24, 3.2.26)$ (5) Using derivatives of trigonometric functions $((\cos)' = -\sin, (\sin)' = \cos, (\sin)' = \cos)$ $(tan)' = sec^2$) (3.3.10, 3.3.12, 3.3.24)
 - (6) Using the chain rule $((f \circ g)'(x) = g'(x) \cdot f'(g(x)))$ (3.4.5, 3.4.13, 3.4.29, 3.4.42, 3.4.46, 3.4.50, 3.4.71)
 - (7) Using implicit differentiation (3.5.11, 3.5.18, 3.5.27, 3.5.36, 3.5.54)
 - (8) Using logarithmic differentiation (3.6.30, 3.6.41, 3.6.42, 3.6.50)

Note: Be sure to know how to combine those methods, and **THINK** about your problem before you tackle it!

- Find the equation of the tangent line to a graph at a point (3.1.35, 3.2.32, 3.3.24, 3.4.54, 3.5.28, 3.6.33)
- Find the equation of the normal line to a graph at a point (3.1.35)
- Find numbers where a tangent line to a graph is horizontal (3.1.51)
- Find n^{th} derivatives of functions (3.1.62)
- Solve word problems using derivatives (3.3.5, 3.3.37, 3.4.82, 3.7.10, 3.7.18), basically, derivatives represent rates of change
- Solve problems using lim_{x→0} sin(x)/x = 1 (3.3.39, 3.3.46, 3.3.51)
 Solve the differential equation y' = ky (i.e. y = Ce^{kx}), and use that formula in real-life situations (3.8.3, 3.8.5)
- Using y' = ky and other information, find, for example C, or k, or y(something)or the half-life of an element (3.8.9, 3.8.10)
- Solve problems using Newton's law of cooling (3.8.13, 3.8.15)

Date: Tuesday, October 5th, 2010.

PEYAM RYAN TABRIZIAN

Also, know how to derive the following (I won't ask any of that on the quiz, but you should know how to do that for the exam!)

- The derivative of a function using **the definition** of the derivative (2.8.21, 2.8.27, 2.8.28)
- The derivative of csc(x), sec(x), cot(x) (this is just the quotient rule)
- The derivative of $f^{-1}(x)$ in terms of f'(x) (3.6.67)
- The derivative of ln(x) and the derivative of ln(|x|)
 The derivative of cos⁻¹(x), sin⁻¹(x), tan⁻¹(x)
- $e = \lim_{x \to 0} (1+x)^{\frac{1}{x}}$
- Second derivatives using the chain rule (3.4.95)
 The solution of T' = k(T T_s) (i.e. Newton's law of cooling)

Finally, know how to define the following (again, won't be on the quiz)

- The derivative of a function *f* at *a*
- *f* is differentiable at *a*, or on *I* (*I* is an interval)
- The sum, product, quotient, chain rules (with all the assumptions)
- e (the **new** definition: e is the number such that $\lim_{h\to 0} \frac{e^h 1}{h} = 1$